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K INTRODUCTION

J Consider a large noisy room in which sound can reverberatc. In onc ¢nd of the
’ room a spcaker radiates a narrow tand signal. In a remote part of the room a scnsor
! array records the sound pressure at cach sensor location and attempts to detect the sig-

' nal. Let k denote the number of sensors. Locally, the signal can cross the array in a
> small number of modes of travel. Let m denote the number of such modes. We shall
W assume that m< k. Each mode may be associated with a scparate acoustic path. In the
> simplest case, cach mode may be represented by the timc delays associated with a
! plane wave arrival. However, this assumption is not nccessary for this discussion. All
‘ that will be assumed is that cach mode is characterized by a rank-1 covariance matrix
and that the vector factor of cach of these rank-1 matrices is known. Let v, denote

B A
, y the vector factor for the i th mode.
:l‘. Note that since the signal is assumed 10 be narrow band, it is convenicnt to for-
‘ap mulate the problem in the frequency domain. This means that all of the pressures dis-
( cussed will be represented by complex numbers.

N

Y The signal will now be characterized by the amplitude cocfficicnts associated with

Iy the modes. The signal field at any time is the sum of the products of cach modc and

™ its associated am plitude. Let a; denote the amplitude of the ¢ th componcat. Then

> the total signal ficld can be described by a vector, s, whosc components are the total

® signal pressurcs at cach of the sensor positions.

N
L~
'; S = oV H 0Vt Oy Vi (n
[\
~ Let V denote a matrix whose column vectors are the vector factors.

'4. V=1[vyva © " Val (2)
o

v and

o

ool a= |7 (3)
9 O

~,

. so that

ﬂ

R

‘ i s=Va (4)

-

So the number of rows in V is k, the number of clements in the array, and thc number
: of columns in V ism. a is an m clement complex vector.

It will also he convenient to define a covariance matrix for the complex coefficients, o;.
Let < > denote an ecnsemble average. Then let
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A= <adl> (5)

Under certain assumptions, the signal covariance matrix will still be of rank-1. For
cxample, we might require that the source not move, that nonc of the reflecting surfaces
move, that no air currents disturb the sound path, ctc. Such assumptions are too stringent
for the purposes of this discussion. Instcad, we shall assume that the sound paths vary
enovigh, or at least involve cnough unknown paramcters, that we must attempt to estimate
the o's, or A. We shall assume that the rank of A is m.

The novelty in this paper will be the rank-m signal. The conceptual problems are
considcrably more difficult than for the rank-1 casc. Different criteria lead to different
detector designs, and the connection between the designs is not obvious. The first
viewpoint which we usc will ignore the detection problem and concentrate on the cstima-
tion probicm.

MAXIMUM LIKELIHOOD ESTIMATION OF «

Maximum likelihood cstimation theory scems to provide the simpiest path 10 cxtend
cxisting array processing theory for this multiple-parameter signal problem. We shall
assume Gaussian noisc. Let x denote a column vector of complex pressures from each

sensor. Let € denote the noise-only covariance matrix. Then for any reccived pressure
ficld. x, the problem is to choosc a to minimize

x-Va)icY(x - Va) (6)
This can bc expanded as
xHClx - xcWa— afvic-x + a"viC-'Va (7)
We can rcarrange the terms to get

x"C-l)c _ xllc*lv(vllc—lv)—lvllc—lx (8)

+ (a_(V”C—~1v)—Ivllc—lx)ll(vllC—lv)(a_(vllc—lv)—l\rllc-—lx)
Obviously, the minimum of this quantity occurs when

, = (ViCc-'vy- vl ¢y (9

and the minimum is
xlIC—lx _ X”C‘]V (vllc-—lv)—lvllc—lx (10)
It is appropriatc to define an estimation matrix operator as

E= (Vic-lyv)ylyHc! (1

I
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:: This operator warrants further examination. The rcader may note that
» v(v¥Cclv )y 'v# ! is the projection operator for V when the metric matrix is €', This
b association with projection opcrators provides a nice gecometric interpretation of the pro-
R cessing algorithms.

¥

Note that E should be used with caution when any of the v, become nearly equal. In
this case, the matrix V¥ C~'v becomes ncarly singular and some undesirable noisc
am plification effects can occur. This subject is still under investigation.

s ¥ &£ 2.0

S AT

Of course, the proper extension of conventional bcam-forming can be found by sct-
ting C to the identity matrix.

‘o
P
L]
2

' -

o . . .
T It is probably best not to refer to the processing scheme described above as beam-

e forming. All current beam-forming theory assumes that the estimation operator is a sim- 1
s ple column vector. The fact that £ is @ matrix complicates the processing somewhat. i
3

KN

P

ESTIMATING THE ESTIMATOR

Assuming that the estimator matrix, E, is to be used, it must first be computed from
C and V. But if C is to be estimated from data, it may be difficult to oblain noisc-only
data from which to compute C. Let us assume that, unbeknown to the opcrator, a signal
is present to contaminate the estimation of C. Let us examine the error which will result
from his attempt to evaluate Eq. 11. He will actually compute

oy
Lo

>

"g{i."* '\‘_':_'n Ny o e

ES+N: (V”(C + VA v”)-lv)—]vll(c + VA v")—l (12)

We must examine what happens when C + V A V¥ is substituted for C. Note that from
Woodbury's formula

‘......,,,
o ptege)

P

(C+VAVH-l-cl_clyTvylc! (13)

’d

£
i 2

where

RO (3

b

T-'= A"+ VHCTlY (14)

S

Note that, among other things, this means that

v + v Aaviylyyt=swleclv - viclv T viClyy! (15)

= (viclyvy -y

EA A LI

- " fam on".
o
-

where

T-+yu-'=(vlic-lv) (16)

P ol P

A« W

w10

SO

e ors

1
[

¢

(P 2. NS I

QO 0, v ()N A ' - :
R e A S ' 4 RO A N O LA MOBNADA WY ;

BOMSOAGHUIONUNY S IOUOL o< o SRR MU OGN (UL R X K MAUSOOOO 100 QOO0 R
R R L) N a‘,‘u'.‘n’.'n’.'.'.‘:'.‘n’:‘c::‘z0!'.'f':::’¢'f'.v!--‘.4 .l:':I?‘:C":O"?Q"::Y‘:".’:!‘:#’!, ORI 373'- KO




g
2
2

';-

L L

<

-

\."‘.

.;"ii;

n e

3

¢

v -+ -"“"'-.
<";5.$‘-"21]

.‘x.}

o

-

-

ol ot
P

S

. Y
RN

LY
«

Paly
R A

2

-
T’

N

%

>3

&,

e

-

*o

x,

[ B Sy

v
L

-

‘ AONOAGIOSCEOONING OIOSSSOOOOONIOICIOOO OO0
I T I T

U=~ A amn

and

(V”(C + VA ‘/Il)—-lv)—l — ( ‘rllcv—l‘— )~1 + A (18)

We can usc this to compute the clfect of the presence of signal.

ES+,\(: ( ( "'IIC—IV '41+A) ‘rll( Cv—l_c-—l‘r a v/lc—l) (19)

- ( ‘/”C—l" )—]l.'llc-]_'l‘ ‘/’”C—I'FA "’”C_l"A ‘/”C-l",’ T ‘/I[Cv-l
_ ( ‘/Hc—lv )—l‘rllc—]_.( T — A + A ("Ilc—l‘/) T ) ‘,'Hc—-l
- ( VIIC—IV )—IVIIC—-I__( T — A + A ( T—l_A—l') T ) leC-l

- ( VHc-lv )—lvllc—l: E

In other words, no crror results. The formula is invariant with respect to the arrival of the
signal.

POWER ESTIMATION

The cstimate of the signal pressurce in the sensors is

Sen= VEx (20)

From this, we can cstimatc the signal-like energy as

< WEXOMWWVEx)> =< x"E'W/V E x> (21)

= <tr(E"V'V Exx"ys ==<uw(E"VI'VEC) =ur(V'VECE"

Note that, bccause of the result in the previous scction, we can be ambiguous about

whether £ was cstimated {rom the true noise- only covariance matrix or from the current
data matrix. So

< sMse> = r((VITVy (v cvyh (22)

This expression is evidently the proper extension of the popular adaptive bearing
response algorithm, sometimes referred to as the "maximum likelihood” or "minimum
variance distortionless look™ algorithm.
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.:' > Of course, we can also casily extend the conventional beam -forming algorithm. In
SN this case
iy

S
4‘2 Econv = (Vv )WH (23)
o
2 S0
Kavs F
e tr( (VHV ) EeonsC Efhy ) = r((VIC v ) (Vv )7 (24)
NIy
s
\ /. This is not, howecver, the optimum dctection structure. There are some other con-
-.';-.j . ceptual issues to be discussed below.
e
SOAY
:J‘: LIKELIHOOD RATIO DETECTION

The structure for the likelihood ratio detector is casy to derive. We need simply to

\.‘;\ look at the exponent in the ratio of the Gaussian probability functions.

-
TOAS
P e+ vAvihy \xsxcix=xcTiv T vicTix (25)
ﬁ\
:r If several samples of x arc to be averaged, this may be morc convenicently written as
7
Py r(CTWV T VECT < x x> (26)
W
oy
' Note that in this case, one must evidently have noisc-only information from which
'O to cstimate C.

o In fact, the form of the likelihood ratio detector suggests theoretical problems which
L are considerably more difficult than one might guess. The probe variable, Eq. 26, does not
¥ hehave according to th~ simple comma distribution which we expect for square-law detec-
' tors. It is formed from a sum of exponential variables with different variances. This, as
will be seen below, complicates the conceptual picture.

L5y .". -
flt’l" Pl

PERFORMANCE INDICES

& e,
A A

In the previous section, we saw that the optimum dctector takes the form of a qua-
dratic inner product. For discussion of detector performance it is convenient to generalize
e this algorithm. We shall define a variable

7

:-').‘ ! n=< Hw x> = tr( W < x xM> ) (27)

where W ois a general square matrix. This function can be regarded as a generalization of
o the beam-forming process. It will result in a scalar variable, n. We must now define a
signal-to-noisc-ratio function to describe the statistics of n. The first step is to examine the
O moments of 1.

® < M>N=1r(C W) (28)

1"
Hn

o0 ) l 0 .‘l h ' v"
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L

W “‘h = ~ . - H . ')()
s < M>gnN=tr{ (C+VAVIYW (29)
L
N 4 . .

: N Here we cncounter a subtle conceptual trap. It is tempting to usc these two formulas to

c.:\ detine a signal-to-noisc ratio. This approach depends on the standard deviation ol the vari-

{ able being proportional to the mean value of the variable. However, since nis a sum of

T uncqual exponential variables, this will not give a good indicator of the standard deviation

::‘: of 1. We must compute the variance more carciully.

e,

o " : :

N :,,.; varignee = < (xUW ox )t» - < N> g (30)

1

I ) . ~ - . .

.\_. This requires us to cvaluate fourth order moments for complex Gaussian variables. It is

! " well known that if Z,0 &, Z., and &y are rcal Gaussian random  variables, then

< 5558 =< L5 < Tl o+ < L5 < S8 ¢ o< L8> < 335.> . However, the
corresponding result for complex Gaussian varniables is not widely known, It s

o2

D
‘Y
< IINEE - < I o< Bl < DI < L (3D
K-
’,';4:‘_ With this knowledge and some index arithmetic it can be seen that
gy
X
N variance = r( WO W € (32)
o
r W are now in a position to define a signal-to-noise ratio (snr).
S
-\":
VA VITw Wy Al
s (snr)l= mh A ”) i - A ) (33)
. r(WICw ¢
t
ot e e - . . .
N:- I'his is casy to compute for the likelihood ratio detector.
g
-t ! "ne-t 1
1) > Y - :
R0 o)t (tr(C v VAV (34)
. LR -1 -1 o -l '
,) r(Covrviclccttvrvicetie)
D
N:ff s arcVTeT v T (v ety 4))?
. (sAr)ig= "=ty TH =1y T (35)
e r((V VT (Ve )
i
._, MAXIMIZING SIGNAL-TO-NOISE RATIO
-_:’!
) . . .
o Curiously, there is rcason to believe that even Eq. 33 docs not tell the whole story.
‘,:.a: To scc this, consider how W might be chosen to maximize the signal-to-noise ratio. We¢
o 2 can usc diffcrential calculus, or the Schwarz incquality to maximize the signal-to-noise ratio
‘-' with respect to W .
Y “.
o Weg=C'VAVIiC! (36)
7
o This produces a squarcd signal-to-noise ratio of
e
NN
-)l‘:
~
" ;
>
W 6
o
s
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(sar) e = rCVTC yA (VT vy A (37)

It is not entirely clear why this detector would not be as good as the likelihood ratio
detector. It must be due to the peculiar behavior of the tail end of the distribution. This
illustrates the difticultics of dealing with sums of uncqual cxponential variables.

Note that Eq. 37, like Eq. 22 or Eq. 24, could be used as a probe function. How-
ever, the use of fourth-order moments is not generally desirable.

ESTIMATION OF A

Minimizing the right side of Eq. 37 with respect 1o A can yield an estimate of A.
Again, the idea is that the noise which looks most like the signal will be that which is most
difficult to process against. Of course, the trace of A must be constrained. so we have
merely to minimize

ey A ey Ay (38)
(r(a))? '

We can minimize this with respect to A. The result is

A= (vihehvy? (39)

However, it is not clear that this is a good estimator. Oncce again, the appearance of
fourth-order moments may causc problems.

ANOTHER FACTORIZATION

In all of the above discussion, the signal covariance matrix has been cxpressed as a
product of three factors. That is, the signal covariance matrix has been written as V A Vv
This factorization was chosen becausc it lends itself to physical interpretation. However,
from a mathematical viewpoint, the factorization is not unique. For some purposcs, we
can find a simpler factorization. If we are willing to give up the obvious physical interpre-
tation, we can choose V' so that A is an identity matrix and (V¥ C~'V) is diagonal. In other
words, we can assumec without loss of generality that

A =1 and  V"C-'W =D (40)

where /7 is the identity matrix and D is a diagonal matrix. These substitutions in the above
cquations provide an apparent simplification. These simplifications may help provide an
intuitive understanding for recaders who arc comfortable with the geomectric implications of
Eq. 40.

CONCLUSIONS

This paper cxtends the class of signals we can address with established array signal
detection/estimation ideas. It docs not provide a logical alternative to familiar array pro-
cessing techniques. Rather, it allows extension of these signal processing ideas to a class of
signal which is often present but often ignored. It provides a way to dcal with problems in

»
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which multiple signals characterize a single hypothesis.

Probably the most important idca developed above is the ostimator matris, £, as
deseribed in Eq. T The utility of this estimator depends on Fig. 190 That s, we can esti-
mate £ without knowing whether a signal was preseni in che data sampled.

The utility of probe or estimation functions such as Eq. 22, 24, 37, and 39 is not yet
clear. The answer will probably depend on details of the actual applications. It is impor-
tant to carcfully investigate the a priori information about the signal parameter matrix, A,
and the required scarch space.

Equation 33 can probably give a recasonable cstimate of detection perforntance in
most cases. However, since the noise is @ sum of uncqual variance exponential variables.,
it may not always give accurate results. Equation 33 should be uscful if applied with cau-
tion and insight. Any analysis which ignores Eq. 33 will probably be wrong.

In general, if the problem involves a single sigiral which fits the usual beam-forming
assumptions, the ideas presented above are not needed. If the signal breaks up into com-
poncnts which may not be entirely coherent, the ideas developed above may come into
play.
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’ Appendix

-

Y FSTIMATION MATRIX AND CONSTRAINED OPTIMAL BEAM-FORMING

O The estimation matrix, £, can play a role in beam-forming. It occurs in the structure
\j' of optimal beam -forming with hard constraints. Since the derivation scems not to he avail-
1. able in the open literature, we shall examine it here.
»
.l The basic problem may be stated as follows. Design a becam-former which has
- minimum nois¢ output subject to the constraint of specificd responscs in certain directions.
Let z denote a vector of beam-forming weights. Let V denote a matrix whose columns arc
the models for signals from the constraint directions. Let b denote a column vector of
constraint valucs for cach direction. The the constraint can be written as
V2 = b (A1)
!"l
e
.o This type of constraint may be used in scveral ways. If the constraint dircctions are
"-:: close together, it could be used for main-lobe maintenance or broadc.ing. The bean

2e could be made to have main-lobes in two or more different directions. The beam could

. also be made to have nulls in certain directions by sctting the appropriate components of b

e to zcro. For example, il v; was the desired look dircction, main-lobe maintenance could
= bc accomplished by sctting the other v's to dircctions about v, and computing b from
\:: VHVI = b

o o

- We shall assume that the number of constraint directions is less than the number of

‘ SCNSOrs.

A\-. - . . . - B

L The optimization process follows standard paths. First, we define a quantity to be
=~ minimized. Let C denote the noise covariance matrix.

-

w=z2"Cz+ V"2 - b))z - b) (A2)

5O

= We shall define z as the vector which minimizes p and find the limit as A gocs to infinity.
f To simplify the notation, it is co.avenient to define the matrix
- M=C+ vyl (A.3) |
’ .
,-::: Then we can expand the expression for d.
:33; =z (C+av vy = xvB - AV 4 At p (A.4)
o .
RS =(Mz-AVhIM " Mz-XVb)y+ A - aWIM-VYb
\-:j-: Since the first term is the only onc which depends on z, it is sufficient to minimize
[ it. This mcans that
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2= MCHAV VI b = (3 CHV VIV p (A.5)

Since V' v is singular, more manipulation is required before it is clear how to take the
limit as A goes to infinity. Again, Woodbury’s thcorem helps.

= (ACT =AW+ v ectvy Wl e v (A.6)

= C7W( —)1:1 + VeV )T
Now we can take the limit as A goes to infinity.
= CWwvicTivy b = EMp (A7)

In other words, the optimal solution consists of first applying the estimation opera-
tor, £, and then simply multiplying by the constraint valucs in b.
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